On super-weakly compact sets and uniformly convexifiable sets
نویسندگان
چکیده
منابع مشابه
?-Independent and Dissociate Sets on Compact Commutative Strong Hypergroups
In this paper we define ?-independent (a weak-version of independence), Kronecker and dissociate sets on hypergroups and study their properties and relationships among them and some other thin sets such as independent and Sidon sets. These sets have the lacunarity or thinness property and are very useful indeed. For example Varopoulos used the Kronecker sets to prove the Malliavin theorem. In t...
متن کاملUniformly Factoring Weakly Compact Operators
Let X and Y be separable Banach spaces. Suppose Y either has a shrinking basis or Y is isomorphic to C(2N) andA is a subset of weakly compact operators from X to Y which is analytic in the strong operator topology. We prove that there is a reflexive space with a basis Z such that every T ∈ A factors through Z. Likewise, we prove that if A ⊂ L(X,C(2N)) is a set of operators whose adjoints have s...
متن کاملOn Uniformly Approximable Sidon Sets
Let G be a compact abelian group and let T be the character group of G. Suppose £ is a subset of T. A trigonometric polynomial f on G is said to be an ^-polynomial if its Fourier transform / vanishes off E. The set E is said to be a Sidon set if there is a positive number B such that 2^xeb |/(X)| á-B||/||u for all E-polynomials /; here, ||/||„ = sup{ |/(x)| : xEG}. In this note we shall discuss...
متن کاملOn fuzzy weakly-closed sets
A new class of fuzzy closed sets, namely fuzzy weakly closed set in a fuzzy topological space is introduced and it is established that this class of fuzzy closed sets lies between fuzzy closed sets and fuzzy generalized closed sets. Alongwith the study of fundamental results of such closed sets, we define and characterize fuzzy weakly compact space and fuzzy weakly closed space.
متن کاملVandermonde sets and super-Vandermonde sets
Given a set T ⊆ GF(q), |T | = t, wT is defined as the smallest positive integer k for which ∑ y∈T y k 6= 0. It can be shown that wT ≤ t always and wT ≤ t − 1 if the characteristic p divides t. T is called a Vandermonde set if wT ≥ t−1 and a super-Vandermonde set if wT = t. This (extremal) algebraic property is interesting for its own right, but the original motivation comes from finite geometri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 2010
ISSN: 0039-3223,1730-6337
DOI: 10.4064/sm199-2-2