On super-weakly compact sets and uniformly convexifiable sets

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

?-Independent and Dissociate Sets on Compact Commutative Strong Hypergroups

In this paper we define ?-independent (a weak-version of independence), Kronecker and dissociate sets on hypergroups and study their properties and relationships among them and some other thin sets such as independent and Sidon sets. These sets have the lacunarity or thinness property and are very useful indeed. For example Varopoulos used the Kronecker sets to prove the Malliavin theorem. In t...

متن کامل

Uniformly Factoring Weakly Compact Operators

Let X and Y be separable Banach spaces. Suppose Y either has a shrinking basis or Y is isomorphic to C(2N) andA is a subset of weakly compact operators from X to Y which is analytic in the strong operator topology. We prove that there is a reflexive space with a basis Z such that every T ∈ A factors through Z. Likewise, we prove that if A ⊂ L(X,C(2N)) is a set of operators whose adjoints have s...

متن کامل

On Uniformly Approximable Sidon Sets

Let G be a compact abelian group and let T be the character group of G. Suppose £ is a subset of T. A trigonometric polynomial f on G is said to be an ^-polynomial if its Fourier transform / vanishes off E. The set E is said to be a Sidon set if there is a positive number B such that 2^xeb |/(X)| á-B||/||u for all E-polynomials /; here, ||/||„ = sup{ |/(x)| : xEG}. In this note we shall discuss...

متن کامل

On fuzzy weakly-closed sets

A new class of fuzzy closed sets, namely fuzzy weakly closed set in a fuzzy topological space is introduced and it is established that this class of fuzzy closed sets lies between fuzzy closed sets and fuzzy generalized closed sets. Alongwith the study of fundamental results of such closed sets, we define and characterize fuzzy weakly compact space and fuzzy weakly closed space.

متن کامل

Vandermonde sets and super-Vandermonde sets

Given a set T ⊆ GF(q), |T | = t, wT is defined as the smallest positive integer k for which ∑ y∈T y k 6= 0. It can be shown that wT ≤ t always and wT ≤ t − 1 if the characteristic p divides t. T is called a Vandermonde set if wT ≥ t−1 and a super-Vandermonde set if wT = t. This (extremal) algebraic property is interesting for its own right, but the original motivation comes from finite geometri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Mathematica

سال: 2010

ISSN: 0039-3223,1730-6337

DOI: 10.4064/sm199-2-2